Industry 4.0 continues to gain momentum across every industrial and manufacturing segment. This revolution is built upon three primary technologies: Big Data, Edge Computing and the Internet of Things (IoT). As the adoption of IoT devices continues to grow, many organizations are switching to edge technology because of its advantages over legacy cloud solutions. One of the key advantages of edge computing is real-time predictive maintenance. In a predictive analytics solution, Artificial Intelligence (AI) is combined with Business Intelligence (BI) to monitor the operating condition and predict when to perform maintenance on that asset.
What is Predictive Analytics?
Predictive analytics uses statistical algorithms and advanced analytics combined with AI techniques to predict future outcomes based on historical and current data patterns. Organizations use this method to benefit possible future events by using predictive modelling to take maintenance decisions before a disruptive event. This technique imports data from the targeted asset synthesizes it and combines it with different data sources. Once a large amount of data is cleaned, the data analysis is initiated to recognize patterns and trends. In simple words, using Artificial Intelligence and Machine Learning technique, a machine can predict future events.
What is Predictive Maintenance?
A subset of predictive analytics, predictive maintenance is the process of utilizing data analysis to predict future outcomes. This technique is used to recognize potential faults in machines and processes. Manufacturing and service industries need to improve the performance of their assets. As per the report by a leading publication, spending on IoT-enabled predictive maintenance will reach 12.9 billion by 2022 compared to $3.4 billion in 2018.
To Know more about IIoT-based predictive maintenance: https://www.infinite-uptime.com/iiot-based-predictive-maintenance-a-mission-critical-need-for-manufacturing/
Comments